

S.V.R.K Govt Degree College(M),Nidadavole

Computer Science Course Outcomes

WebTechnology Sem-VI

Course Outcome

1. To understand the web architecture and web services.
2. To practice latest web technologies and tools by conducting experiments.
3. To design interactive web pages using HTML and Style sheets.
4. To study the framework and building blocks of .NET Integrated Development Environment.
5. To provide solutions by identifying and formulating IT related problems.

Web Technologies Lab

1. Write a HTML program illustrating text formatting.
2. Illustrate font variations in your HTML code.
3. Prepare a sample code to illustrate links between different sections of the page.
4. Create a simple HTML program to illustrate three types of lists.
5. Embed a calendar object in your web page.
6. Create an applet that accepts two numbers and perform all the arithmetic operations on them.
7. Create nested table to store your curriculum.
8. Create a form that accepts the information from the subscriber of a mailing system.
9. Design the page as follows:
 11. Using “table” tag, align the images as follows:
 12. Divide the web page as follows:
 13. Design the page as follows: Page 29 of 50
 14. Illustrate the horizontal rulers in your page.
 15. Create a help file as follows:
 16. Create a form using form tags(assume the form and fields).
 17. Create a webpage containing your biodata(assume the form and fields).
 18. Write a html program including style sheets.
20. Write a html program to layers of information in web page.
21. Create a static webpage.

Distributed Systems Cluster-1

Course Outcomes

1. Create models for distributed systems.
2. Apply different techniques learned in the distributed system

3. Distributed Systems Cluster-1LAB

Outcomes:

1. Students will get the concepts of Inter-process communication
2. Students will get the concepts of Distributed Mutual Exclusion and Distributed Deadlock Detection algorithm.
 1. To study client server based program using RPC.
 2. To study Client server based program using RMI.
 3. To study Implementation of Clock Synchronization (Logical/Psysical)
 4. To study Implementation of Election algorithm.
 5. To study Implementation of Mutual Exclusion algorithms.

6. To write program multi-threaded client/server processes.
7. To write program to demonstrate process/code migration

CLOUD COMPUTING CLUSTER-2

Course Outcomes

1. Compare the strengths and limitations of cloud computing
2. Identify the architecture, infrastructure and delivery models of cloud computing
3. Apply suitable virtualization concept.
4. Choose the appropriate cloud player , Programming Models and approach.
5. Address the core issues of cloud computing such as security, privacy and interoperability
6. Design Cloud Services and Set a private cloud

CLOUD COMPUTING CLUSTER-2LAB

Outcomes: Learner will be able to...

1. Appreciate cloud architecture
2. Create and run virtual machines on open source OS
3. implement Infrastructure , storage as a Service. Use Eucalyptus or Open Nebula or equivalent to set up the cloud and demonstrate.
1. Find procedure to run the virtual machine of different configuration. Check how many virtual machines can be utilized at particular time.
2. Find procedure to attach virtual block to the virtual machine and check whether it holds the data even after the release of the virtual machine.
3. Install a C compiler in the virtual machine and execute a sample program.
4. Show the virtual machine migration based on the certain condition from one node to the other.
5. Find procedure to install storage controller and interact with it.

PROJECT & VIVA-VOCE

The objective of the project is to motivate them to work in emerging/latest technologies, help the students to develop ability, to apply theoretical and practical tools/techniques to solve real life problems related to industry, academic institutions and research laboratories.

The project is of 2 hours/week for V & VI semester duration and a student is expected to do planning, analyzing, designing, coding, and implementing the project.

The initiation of project should be with the project proposal.

The synopsis approval will be given by the project guides.

The project proposal should include the following: • Title • Objectives • Input and output • Details of modules and process logic • Limitations of the project • Tools/platforms, Languages to be used • Scope of future application

Data Base Management System Sem-v(A)

Course Outcomes:

On completing the subject, students will be able to:

1. Design and model of data in database.
2. Store, Retrieve data in database.

DATABASE MANAGEMENT SYSTEMS LAB

1. Draw ER diagrams for train services in a railway station
2. Draw ER diagram for hospital administration
3. Creation of college database and establish relationships between tables
4. Write a view to extract details from two or more tables
5. Write a stored procedure to process students results
6. Write a program to demonstrate a function
7. Write a program to demonstrate blocks, cursors & database triggers.

8. Write a program to demonstrate Joins
10. Write a program to demonstrate of Aggregate functions
11. Creation of Reports based on different queries
12. Usage of file locking table locking, facilities in applications.

Software Engineering Sem-v(B)

Course outcomes:

1. Ability to gather and specify requirements of the software projects.
2. Ability to analyze software requirements with existing tools
3. Able to differentiate different testing methodologies
4. Able to understand and apply the basic project management practices in real life projects
5. Ability to work in a team as well as independently on software projects.

Software Engineering LAB

1. Studying various phases of Water-Fall Model.
2. Prepare SRS for Banking or On line book store domain problem
3. Using COCOMO model estimate effort for Banking or on line book store domain problem.
4. Calculate effort using FP oriented estimation model
5. Analyze the Risk related to the project and prepare RMMM plan.
6. Develop Time-line chart and project table using PERT or CPM project scheduling methods.
7. Draw E-R diagram, DFD, CFD and STD for the project.
8. Design of the test cases.
9. Prepare FTR. Version control and change control for software configuration item.

Data Structure Sem-IV

Course Outcomes

After completing this course satisfactorily, a student will be able to:

1. Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
2. Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs.
3. Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
4. Demonstrate different methods for traversing trees
5. Compare alternative implementations of data structures with respect to performance
6. Compare and contrast the benefits of dynamic and static data structures
7. Describe the concept of recursion, give examples of its use, describe how it can be implemented using a stack .
8. Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.

PRACTICAL -DATA STRUCTURES USING JAVA LAB

1. Write a Program to implement the Linked List operations
2. Write a Program to implement the Stack operations using an array.
3. Write Programs to implement the Queue operations using an array.
4. Write Programs to implement the Stack operations using a singly linked list.
5. Write Programs to implement the Queue operations using a singly linked list.
6. Write a program for arithmetic expression evaluation
7. Write a program to implement Double Ended Queue using a doubly linked list.
8. Write a program to search an item in a given list using Linear Search and Binary Search
9. Write a program for Quick Sort
10. Write a program for Merge Sort
11. Write a program on Binary Search Tree operations(insertion, deletion and traversals)
12. Write a program for Graph traversals

Object Oriented Program Using Java Sem-III

Course outcomes:

1. Introducing to Object Oriented Programming
2. How to create and uses arrays.
3. How to create and use functions.
4. How to code control statements.
5. How to create and use Interfaces
6. How to create and use Multiple Threads
7. How to use Applet code in html page
8. How to create Packages in Java
9. How to Implement Exception Handlings.

OBJECT ORIENTED PROGRAMMING USING JAVA LAB

1. Write a program to perform various String Operations
2. Write a program on class and object in java
3. Write a program to illustrate Function Overloading & Function Overriding methods in Java
4. Write a program to illustrate the implementation of abstract class
5. Write a program to implement Exception handling
6. Write a program to create packages in Java
7. Write a program on interface in java
8. Write a program to Create Multiple Threads in Java
9. Write a program to Write Applets to draw the various polygons
10. Write a program which illustrates the implementation of multiple Inheritance using interfaces in Java
11. Write a program to assign priorities to threads in java

Data Structure using C Sem-II 2020-21

Learning outcomes of Course:

Upon successful completion of the course, a student will be able to:

1. Understand available Data Structures for data storage and processing.
2. Comprehend Data Structure and their real-time applications - Stack, Queue, Linked List, Trees and Graph
3. Choose a suitable Data Structures for an application
4. Develop ability to implement different Sorting and Search methods
5. Have knowledge on Data Structures basic operations like insert, delete, search, update and traversal
6. Design and develop programs using various data structures
7. Implement the applications of algorithms for sorting, pattern matching etc.

Data Structures Using C LAB

1. Write a program to read 'N' numbers of elements into an array and also perform the following operation on an array a. Add an element at the beginning of an array b. Insert an element at given index of array c. Update a element using a values and index d. Delete an existing element
2. Write a program using stacks to convert a given a. postfix expression to prefix b. prefix expression to postfix c. infix expression to postfix
3. Write Programs to implement the Stack operations using an array
4. Write Programs to implement the Stack operations using Linked List.
5. Write Programs to implement the Queue operations using an array.
6. Write Programs to implement the Queue operations using Linked List.
7. Write a program for arithmetic expression evaluation.
8. Write a program for Binary Search Tree Traversals

9. Write a program to implement dequeue using a doubly linked list.
10. Write a program to search an item in a given list using the following Searching Algorithms a. Linear Search b. Binary Search.
11. Write a program for implementation of the following Sorting Algorithms a. Bubble Sort b. Insertion Sort c. Quick Sort
12. Write a program for polynomial addition using single linked list
13. Write a program to find out shortest path between given Source Node and Destination Node in a given graph using Dijkstrar's algorithm.
14. Write a program to implement Depth First Search graph traversals algorithm
15. Write a program to implement Breadth First Search graph traversals algorithm

Problem Solving C Sem-I 2020-21

Learning outcomes of Course:

1. Understand the evolution and functionality of a Digital Computer.
2. Apply logical skills to analyse a given problem
3. Develop an algorithm for solving a given problem.
4. Understand 'C' language constructs like Iterative statements, Array processing, Pointers, etc.
5. Apply 'C' language constructs to the algorithms to write a 'C' language program.
3. Detailed Syllabus: (Five units with each unit having 12 hours of class work)

Problem solving in C LAB

1. Write a program to check whether the given number is Armstrong or not.
2. Write a program to find the sum of individual digits of a positive integer.
3. Write a program to generate the first n terms of the Fibonacci sequence.
4. Write a program to find both the largest and smallest number in a list of integer values
5. Write a program to demonstrate refection of parameters in swapping of two integer values using Call by Value & Call by Address
6. Write a program that uses functions to add two matrices.
7. Write a program to calculate factorial of given integer value using recursive functions
8. Write a program for multiplication of two N X N matrices.
9. Write a program to perform various string operations.
10. Write a program to search an element in a given list of values.
11. Write a program to sort a given list of integers in ascending order.
12. Write a program to calculate the salaries of all employees using Employee (ID, Name, Designation, Basic Pay, DA, HRA, Gross Salary, Deduction, Net Salary) structure. a. DA is 30 % of Basic Pay b. HRA is 15% of Basic Pay c. Deduction is 10% of (Basic Pay + DA) d. Gross Salary = Basic Pay + DA+ HRA e. Net Salary = Gross Salary – Deduction
13. Write a program to illustrate pointer arithmetic.
14. Write a program to read the data character by character from a file.
15. Write a program to create Book (ISBN, Title, Author, Price, Pages, Publisher) structure and store book details in a file and perform the following operations a. Add book details b. Search a book details for a given ISBN and display book details, if available c. Update a book details using ISBN d. Delete book details for a given ISBN and display list of remaining Books